首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22545篇
  免费   839篇
  国内免费   123篇
化学   14680篇
晶体学   235篇
力学   686篇
数学   2172篇
物理学   5734篇
  2023年   131篇
  2022年   104篇
  2021年   499篇
  2020年   428篇
  2019年   433篇
  2018年   382篇
  2017年   360篇
  2016年   675篇
  2015年   577篇
  2014年   815篇
  2013年   1392篇
  2012年   1699篇
  2011年   1905篇
  2010年   1206篇
  2009年   1047篇
  2008年   1605篇
  2007年   1387篇
  2006年   1431篇
  2005年   1207篇
  2004年   1066篇
  2003年   870篇
  2002年   706篇
  2001年   481篇
  2000年   400篇
  1999年   248篇
  1998年   157篇
  1997年   169篇
  1996年   229篇
  1995年   176篇
  1994年   191篇
  1993年   198篇
  1992年   147篇
  1991年   119篇
  1990年   113篇
  1989年   97篇
  1988年   64篇
  1987年   71篇
  1986年   49篇
  1985年   74篇
  1984年   50篇
  1983年   42篇
  1982年   63篇
  1981年   61篇
  1979年   46篇
  1978年   45篇
  1977年   34篇
  1976年   41篇
  1975年   37篇
  1974年   36篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 30 毫秒
41.
In this work, we investigate the effect of morphology and segmental dynamics on ion transport in polymerized lyotropic liquid crystals (polyLLCs) containing 1-butyl-3-methylimidazolium tetrafluoroborate as ionic liquid (IL). We demonstrate that two important factors, which affect ion conduction in polyLLCs, are grain size and chain density at the interface. The polyLLC with large grain size (70 nm) shows significant reduction in ion conductivity (one order of magnitude) compared to its homopolymer/IL mixture. However, the polyLLC with small grain size (20 nm) has little difference in ion conductivity compared to its homopolymer/IL mixture. It is observed that decreasing the chain density enhances the interaction of IL with polymer chains and consequently slows the relaxation of polymer chains. In addition, comparing the dynamics of polymer chains in mixtures of homopolymer/IL and templated LLC mesophases shows that the confinement in LLC structure prolongs the relaxation of polymer chains.  相似文献   
42.
We have synthesized new magnetic resonance imaging (MRI) T1 contrast agents (CA1 and CA2) that permit the activatable recognition of the cellular vicinal thiol motifs of the protein thioredoxin. The contrast agents showed MR relaxivities typical of gadolinium complexes with a single water molecule coordinated to a Gd3+ center (i.e., ~4.54 mM−1s−1) for both CA1 and CA2 at 60 MHz. The contrast agent CA1 showed a ~140% relaxivity enhancement in the presence of thioredoxin, a finding attributed to a reduction in the flexibility of the molecule after binding to thioredoxin. Support for this rationale, as opposed to one based on preferential binding, came from 1H-15N-HSQC NMR spectral studies; these revealed that the binding affinities toward thioredoxin were almost the same for both CA1 and CA2. In the case of CA1, T1-weighted phantom images of cancer cells (MCF-7, A549) could be generated based on the expression of thioredoxin. We further confirmed thioredoxin expression-dependent changes in the T1-weighted contrast via knockdown of the expression of the thioredoxin using siRNA-transfected MCF-7 cells. The nontoxic nature of CA1, coupled with its relaxivity features, leads us to suggest that it constitutes a first-in-class MRI T1 contrast agent that allows for the facile and noninvasive monitoring of vicinal thiol protein motif expression in live cells.  相似文献   
43.
44.
ABSTRACT

A novel BODIPY-based dye with highly emissive character was configured by Sonogashira coupling and routinely characterized by NMR and MS technology. The emission of dye was investigated in solution/film/solid and shows intensive emission. In solution, the emission peak appeared around 510 nm with little influence by the polar environment. The terthiophene plays an effective antenna effect, harvesting the light and transferring the energy to BODIPY. The pseudo Stoke's shift enlarged to ~170 nm in solution. In film, the emission peak shifted to 563 nm in polycarbonate matrix. And it shifted further to 585 nm in solid due to the highly twisted structure, which avoided closely regular-tight packing. The dye rendered an intense fluorescence, good optothermal stability, and high fluorescence quantum yield (0.55). The solid emission showed highly red emission with Commission Internationale de L'Eclairage (CIE) coordinates of (X = 0.69, Y = 0.31). Thus, the synthesized dye is idea candidate for emitting materials.  相似文献   
45.
Mixed-metal oxyhydroxides—especially those of Ni and Fe—are one of the most active classes of materials known for catalyzing the oxygen evolution reaction (OER). Here, nanoparticulate mixed metal oxyhydroxides (of Ni, Fe, and Co) were prepared on an electrode surface by electrochemical reaction of a precursor solution encapsulated in aqueous nanodroplets (AnDs), with each of the droplets containing 10 s of attoliters of fluid. Electrode reactions and synthesis can be monitored in situ by electrochemistry as single AnD stochastically lands and interacts with the working electrode. Resultant metal oxyhydroxide nanoparticles can be size and composition controlled precisely by modulating the precursor solution stored in the AnD. Nanoparticulate metal oxyhydroxides were implemented as catalysts for the OER and exhibited superior catalysis compared to their thin-film counterparts, demonstrating a hundred-thousand-fold enhancement in atom efficiency at comparable turnover rates.  相似文献   
46.
The rapid development of electrochemical energy storage systems requires new electrode materials with high performance. As a two-dimensional material, molybdenum disulfide (MoS2) has attracted increasing interest in energy storage applications due to its layered structure, tunable physical and chemical properties, and high capacity. In this review, the atomic structures and properties of different phases of MoS2 are first introduced. Then, typical synthetic methods for MoS2 and MoS2-based composites are presented. Furthermore, the recent progress in the design of diverse MoS2-based micro/nanostructures for rechargeable batteries, including lithium-ion, lithium-sulfur, sodium-ion, potassium-ion, and multivalent-ion batteries, is overviewed. Additionally, the roles of advanced in situ/operando techniques and theoretical calculations in elucidating fundamental insights into the structural and electrochemical processes taking place in these materials during battery operation are illustrated. Finally, a perspective is given on how the properties of MoS2-based electrode materials are further improved and how they can find widespread application in the next-generation electrochemical energy-storage systems.  相似文献   
47.
Molecular dumbbells with organic cage capping units were synthesised via a multi-component imine condensation between a tri-topic amine and di- and tetra-topic aldehydes. This is an example of self-sorting, which can be rationalised by computational modelling.  相似文献   
48.
The fascinating properties of single-layer graphene isolated by mechanical exfoliation have inspired extensive research efforts toward two-dimensional (2D) materials. Layered compounds serve as precursors for atomically thin 2D materials (briefly, 2D nanomaterials) owing to their strong intraplane chemical bonding but weak interplane van der Waals interactions. There are newly emerging 2D materials beyond graphene, and it is becoming increasingly important to develop cost-effective, scalable methods for producing 2D nanomaterials with controlled microstructures and properties. The variety of developed synthetic techniques can be categorized into two classes: bottom-up and top-down approaches. Of top-down approaches, the exfoliation of bulk 2D materials into single or few layers is the most common. This review highlights chemical and physical exfoliation methods that allow for the production of 2D nanomaterials in large quantities. In addition, remarkable examples of utilizing exfoliated 2D nanomaterials in energy and environmental applications are introduced.  相似文献   
49.
π–π Stacking is omnipresent not only in nature but in a wide variety of practical fields applied to our lives. Because of its importance in a performance of natural and artificial systems, such as light harvesting system and working layer in device, many researchers have put intensive effort into identifying its underlying nature. However, for the case of π–π stacked systems composed of antiaromatic units, the understanding of the fundamental mechanisms is still unclear. Herein, we synthesized a new type of planar β,β’-phenylene-bridged hexaphyrin (1.0.1.0.1.0), referred as naphthorosarin which possesses the 24π-electron conjugated pathway. Especially, the corresponding antiaromatic porphyrinoid shows the unique property to form dimeric species adopting the face-to-face geometry which is unprecedented in cases of known annulated naphthorosarins. In order to elucidate the intriguing properties derived from the stacked dimer, the current study focuses on the experimental support to rationalize the observed π–π interactions between the two subunits.  相似文献   
50.
Journal of Solution Chemistry - A polemic is given regarding the apparent molal volumes reported in the recent paper by Mohammadi and coworkers. The authors’ calculated apparent molal volumes...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号